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For a lightning discharge model presented by the author, J. S. Nisbet, and J. R.
Kasha §. Comput. Phy82, 193, 1989), we simulate lightning by letting the conduc-
tivity tend to infinity wherever the electric field reaches the breakdown threshold. Here
we show that for this discharge model and for a one parameter family of integration
schemes, the backward Euler scheme is the only one that leads to the equilibration of
the electric potential along the discharge channel. Moreover, the potential obtained
by letting the conductivity tend to infinity in the continuous equation is identical
to the potential obtained in the backward Euler approximation when conductivity
tends to infinity. Connections to diffusion limited aggregation (DLA), to more recent
schemes for simulating the lightning discharge, and to experiments of Wiléaais
are diSCUSSGd.@ 1998 Academic Press

1. INTRODUCTION

In a series of papers [2—4], we developed a method to simulate a lightning dischar
flash was initiated when the electric field reached the so-called “breakdown threshold.
model generated the discharge region, charge transfer, and detailed charge rearran
associated with the flash. The model was obtained by discretizing Maxwell’s equat
using volume elements in space, and a backward Euler scheme in time, and then eval
the solution limit as the conductivity tends to infinity in the breakdown region. In this pa
we focus on the time integration, and we show that if time evolves continuously, witt
any discretization, we obtain precisely the same formulas for the discharge proces
were obtained earlier using the backward Euler scheme. Hence, even though a ten
discretization appeared in our earlier work, the formula we obtained was exact in the s
that it coincides with the formula associated with the continuous time process.

In our earlier work, we chose the backward Euler time scheme based on the follo
physical consideration: A cloud discharge should equilibrate the electric potential alon
discharge channel. When one considers a one parameter family of integration schem:
includes the backward Euler (implicit) scheme and the forward Euler (explicit) scheme
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backward Euler scheme is the only member of the family that equilibrates of the elec
potential along the discharge channel. Hence, the discretization used in our earlier v
based on physical considerations, now has a rigorous mathematical basis as well sir
generates the electric potential obtained by exact integration of the equations of evolut

We now discuss the relation between our lightning discharge scheme and both earlier
later work. There are some connections with the theory of “diffusion limited aggregatio
or DLA (we thank Sergei Obukhov for pointing out this possible connection). One of tl
first papers [20] in this area appeared in 1981, and subsequently, there has been enor
interest. Research into DLA has connections to fractals, to fractal dimension, to real-sg
renormalization group analysis, and to many other topics. One aspect of this DLA wc
stochastic models for dielectric breakdown (see [11, 14]), is especially relevant to
lightning discharge. These stochastic models for dielectric breakdown arise out of an effo
model the complicated branching patterns that result from dielectric breakdown of gase
liquid, and solid insulators. Consider a lattice in 2 dimensions where the poigraidhe
origin is fixed at zero while on a surrounding circle is held fixed at one. In [14] they think of
the discharge process as corresponding to a series of bonds formed between adjacent!
points with all bonded lattice points having potential zero. The bonds grow in a stochas
stepwise fashion, starting from the origin. In any step, we first solve Laplace’s equation in
circular domain subject to the boundary conditions th&t one on the surrounding circle,
while ¢ is zero on the bonded set. We connect a new bond to the existing bonded setwher
probability of bondingi(, j) to an adjacent lattice point'( j’) is in proportion tap(i’, j’)".
Heren > 0 is a fixed parameter associated with the discharge procgsan-be varied in
order to try to make the modeled discharge resemble experimentally observed discha
Since (/, j’) is adjacent tdi, j) in the lattice and since (', j') — ¢, ) =¢ (', |), it
follows thatg (i’, ") approximates eithefy (i, j) or¢y(i, j); thatis,¢(i’, ') approximates
either thex or y component of the electric field at the lattice pointj). Hence, if the
likelihood of a new bond is proportional #xi’, j")", then loosely speaking, the most likely
bonds to form are those where the local electric field is largest. There has been much fol
up work on this strategy for modeling dielectric breakdown, including application to bz
lightning [16], computation of the fractal dimension of lightning using digitized picture
[15], and some simulations of two dimensional cloud discharges [13].

In comparing this DLA discharge approach to our discharge scheme, the approache
related in the sense that Laplace’s equation enters into the model and discharge brar
tend to form where the electric fields are largest. On the other hand, there are fundame
differences. There are no unknown parametersijike our scheme, our scheme is deter-
ministic not stochastic, and in our scheme, we do not need to know the potential at a p
in the middle of the domain (recall the assumption th& zero at the origin of the lattice,
and along the bonded set). In our approach, we only require boundary conditions on
outside of the domain, and everywhere inside the domain, including the breakdown reg
itself, we compute the potential. In the literature on dielectric breakdown, the prevalent vi
seems to be that since the observed breakdown regions are complex and tortuous with |
branches, the underlying physical processes are stochastic in nature. In contrast, in our
roach, we obtain similar complex, branched structures in an entirely deterministic fash
in which the branching is caused by activation of the consti&int |V¢| < breakdown
threshold, when we solve the associated Maxwell’s equations.

Laboratory experiments seem to confirm the important role played by the static elec
field in discharge propagation. In a fascinating paper [19], Williams, Cooke, and Wrig|
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develop arexperimentamodel for cloud discharges using a dielectric material polymethy
methacrylate. They state, “Despite the complications imposed by the geometry of the
veloping discharge in charged clouds, all the laboratory results in this study indicate tha
discharge is controlled predominately by a single parameter: the local electrostatic field
a knowledge of this local field response that is essential in determining how discharges
pagate in and around arbitrary distributions in space charge.” We return to this observ:
later.

Two other discharge models appeared in the literature more recently. In the mod
Helsdon, Wu, and Farley (see [7, 8, 17]) lightning propagates along the electric field li
starting from a point where the electric field first reaches the breakdown threshold.
ends of the channel are the first points along the propagation path where the magn
of the electric field is less than the termination criterion (150 kV/m). It is assumed t
the linear charge density at any poldtalong the channel is proportional to the differenc
between the potential at the point where the discharge emanates, and the potdhtial
The value of this proportionality constantcontrols the amount of charge transferred b
the discharge. In order to maintain charge neutrality over the channel, it is extended by
grid points beyond the designated termination point. In this extended region, it is assu
that the charge density drops off lilke®*, while a similar exponential decay of charge
occurs around the channel.

In comparing this approach to our approach to cloud discharges, we note that branc
cannot occur in their method. Their discharge simply follows the electric field lines ul
the termination condition is satisfied. (Note that a more recent paper [17] by Solomon
Baker gives a modification that allows a longer discharge path that can reach the e:
Observe that in the approach of [7, 8], there are many unknown parameters and assum
that need physical justification.

In a different approach to lightning discharge, Ziegler and MacGorman [21] perforr
charge rearrangement whenever the magnitude of the electric field exceeds the brealk
threshold. In any given time step, they determine the part of the model domain where
electric field exceeds the breakdown threshold, and throughout this region, they adjus
charge wherever the charge density exceeds a prescribed threshold. The amount of ¢
adjustment is proportional to the difference between the prescribed threshold and the
charge density. This approach leads to breakdown volumes, and is quite different fron
approach.

2. THE DISCRETE EQUATIONS AND AN ELEMENTARY ARC BREAKDOWN

As explained in [4], our model for the lightning discharge involves the following assur
tions:

(a) The time derivative of the magnetic field can be neglected.

(b) The electricfield magnitude is always less than or equal to the breakdown thres
Es.

(c) When the electric field reaches the breakdown threskgléit some point, the
conductivity tends to infinity in a small neighborhood of that point.

Although in the numerical simulation of [4] we used a constant value 250 kV/Bdowe
could just as easily have allowét}; to depend on position. Moreover, recent experiment
results by Marshalét al. [9, 10] indicate that the breakdown threshold in a thunderclot
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may be even less than 250 kV/m. That is, when balloons fly through thunderstorms, ele«
field values greater than 150 kV/m are rarely detected. Hence, breakdown must occl
values of the electric field smaller than this. In [9] this smaller than expected value for 1
breakdown threshold is explained by the initiation of an electron avalanche.

Note that in a neighborhood of a lightning channel, assumption (a) is clearly not satisfi
and as a result, in the framework (a)—(c), we can never obtain the myriad of lightni
phenomena (darts, M-components, J- and K-processes, multiple strokes along the
channel) described, for example, in the book [18] by Uman. Nonetheless, one is abl
obtain the lightning channel and the charge rearrangement associated with a discharge
information, when incorporated in thunderstorm models (e.g., see [5, 6, 12, 21, 22]) t
describe the generation, interaction, and motion of charged particles, can be used to ¢
the long-term evolution of a thunderstorm.

We emphasize that our simulation process yields the discharge region and the ch
rearrangement, but not the speed of lightning or the number of return strokes. Rouc
speaking, our simulation process can be described in the following way: We let the elec
potential¢ evolve according to Maxwell’s equations, stopping at the first instant of tirr
where the magnitude 0¥ ¢ reachesEg. Letting the conductivityy tend to infinity in a
neighborhood of that poing is reevaluated by taking the limit in the equation of evolution.
If the magnitude oiV¢ is beneathEg everywhere in the domain, we stop the lightning
discharge. But in some cases,cagends to infinity, the magnitude &f¢ reacheEg at a
nearby point. When this happens, wedetend to infinity in a neighborhood of that nearby
point. This process of repeatedly lettiagtend to infinity and checking the magnitude
of V¢ continues until the magnitude &f¢ is beneathEg everywhere in the domain.
Although this breakdown process requires a number of steps as we successivengt
to infinity and reevaluate, we view the entire process as occurring instantly. As a resul
we cannot determine the speed of lightning or the number of return strokes. Instead,
obtain the lightning channel, which we consider to be infinitesimally thin, and the char
rearrangement associated with the lightning.

Our breakdown model is based on Maxwell’s equations. In particular, by Ampere’s Lz
we have

dE
VXH:Sa-l—GE-i-J, (2)

wheree is the permittivity,o is the conductivityE is the electric fieldJ is the current
density associated with charged particles circulating in the cle@dis the conduction
current density, and% is the displacement current density. We assume Xhatknown
and that we wish to solve for the electric field. Taking the divergence gives

JoE
eV-E—FV-GE—i—V-J:O. (2)

By assumption (a)y x E=0, E is the gradient of a potential, and (2) yields

V3¢
ot

&

+V-(0Ve)+V-I=0, (3)

whereV? denotes the Laplacian operator definedMfy=V - V.
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To discretize (3), we integrate over volume elements, and then we replace gradien
finite differences. Although there are many ways to carry out the discretization process
approach leads to a system of differential equations for which we can analyze the effe
lettingo tend to infinity at a point in space where the magnitude of the electric field is eq
to the breakdown threshold. To simplify the discussion, suppose that the region of inte
is decomposed into cubes with the sides of the cubes parallel to the axes of a Cart
coordinate system. Integrating (3) over each cube, applying the divergence theorem
interchanging the order of differentiation, we obtain the following relation for a typical cu
C in the tessellation,

0
/ gvﬁ-ds+/ oVé-dS+i =0, 4)
ac Ot Jac

wherei is the net current leaving andaC is the boundary of.

If ® is a vector whose components are the values of the potential at the centroid of
cube, thenv% -dSon a face of a cube is approximated by the area of the face times
difference between the values % at the centroid of the cubes on opposite sides of tt
face, divided by the distance between the centroids. A similar approximation can be
fortheVg - dSterm in (4) except that we multiply by the value®ft the centroid of each
face. With these finite difference approximations, we arrive at an equation of the form

Ad +BP +i=0, (5)

where the dot abov@ denotes time derivative. The matixobtained by this process is
essentially a discretization of the Laplacian oper&tarThe structure oB is similar except
that it involves the values of at the centroids of each face (see [3] for the details).

To implement the constrainte|| < Eg given in (b) on the Euclidean length & we
employ the more tractable sup-norm constrdil ., < Eg where

IEllcc = maximuny{|Ex|, |Eyl, |Ezl}.

In particular, for the discretization (5) wheg is the vector whose components are th
potential at the centroid of each cube dgi(t) and®,(t) denote the potential at the centroids
of two adjacent cubes in the tessellation. We approximate the condBE@n| .. < Eg by
the finite difference relation

| Pa(t) — Pp(t)] < Eg, ©6)
h

whereh is the centroid separation. The condition (6) must be satisfied for each pai
components of associated with adjacent cubes. At any instant of time where (6) becor
an equality for an index paifj, k) associated with a pair of adjacent centroids in th
tessellation, we let the value 6fon the associated cube face tend to infinity. As we chan
the value ofr on this face, Eq. (5) is transformed to

A+ B+rwwH)® +i =0, (7)

wherer is proportional to the difference between the new (large) value #ord the original
value, the superscrifit denotes transpose, awds a vector whose entries are all zero excey
thatw; = 1 andwy = —1.
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In order to evaluate the effect of this breakdown of the atmosphere (corresponding
letting o, or equivalentlyz, tend to infinity), we need to evaluate the solution to (7) a
an instant of timet™, just beyond, ast tends to infinity. In our earlier work [2, 3], we
analyzed this limit when (7) was approximated by the backward Euler time discretizati
This backward Euler approximation was the basis for the simulations [4] in which v
compared the fields of the model to observed electric fields.

3. AONE PARAMETER FAMILY OF INTEGRATION SCHEMES

Lettingu be a parameter, let us consider the following one parameter family of integrati
schemes associated with (5):

AL — 3" + AtB[u®" + (1 - )3 = Ati". ®)

In [3] we note that the discretization process described above leads to symmetric matr
A andB that are positive definite when the electric potential vanishes on the boundary
the problem domain, and in this case, (8) is unconditionally stablg fer/2, while it is
conditionally stable At should be sufficiently small) for < 1/2. In [4] we observe that
the Crank—Nicholson schenig = 1/2) produced the best accuracy in time integration ug
to a flash.

Let us now apply this scheme to (7) and examine the limit &&nds to infinity and as
At tends to zero. That is, " (At, 1) is the solution®"*? to

A[B" — B"] + At(B 4+ twwH[u® " + (1 — p)®"] = Ati", (9)
we wish to evaluate the limit, denotdel't, given by

®" = lim lim ®"(At, 7).

At—0 =00

THEOREM1. If A andB are symmetric and\ is positive definitethen

1l wie"

+
=t TA S W (10)
Moreover we have
1
Ot — ot = <1 - u) (@] — o). (11)

Proof. Rearranging (9) gives
(A + AtuB + tww )" = (A 4 (1 — DAL(B + tww'))@" + Ati". (12)

Let us define the matriC(At) = A+ AtuB, and the quantityy = Atur. Hence, the
coefficient matrix for®"*! in (12) has the formC(At) + pww'. SinceA is positive
definite andB is symmetricC(At) is positive definite forAt sufficiently small. Since
p > 0, it follows thatC(At) 4+ pww! is also positive definite (foat sufficiently small). By
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the Sherman—Morrison—-Woodbury formula (see [2]), the inverse of the coefficient ma
can be expressed as

P

-1 T -1
1+pWTC(At)_lWC(At) ww'C(Ah L (13)

(C(AD) + pww") T =Ccan ™t —

Hence, a tends to infinity (or equivalently, astends to infinity), we have

cat)y~twwTcan?
wTC(At)~lw

lim (C(At) + pww")™t = Cc(at)~ 1 —
pP—>00

Note too that ag\t tends to zeroC(At) approaches, and sinceA is invertible,C(At) !
approache#& 1. It follows from (9) that®"" is the sum of the following terms denoted
Egs. (14)—(16):

AlitmO lim At(C(At) + pww ) ((u — HBB" +i")
—0 p—>oo

[ A~ lwwTA-1]
_ -1~ s H o n iny
= _A WA W | AI{TOAt((M 1HB®" +i") =0, (14)
lim lim (C(At) + pww'))tA®"
At—0 p—o0
I A-wwT AT w' "
At ————— |A®" =" - —— AT 15
| wTA- 1w | wAw (15)
Alitmo lim (C(At) + Aturww ) tww' ®" (1 — 1) Atz. (16)
—-0 7—>00
To simplify (16), we apply (13) to obtain
Ty—1 1 -1
(C(AL) + pww' )W = C(AD) ™ w,

1+ pwTC(At) 1w
and (16) simplifies to

) —DAtzw' " —1 w'e"
lim (u = DAtz cattw=HK"=

— A7 'w. 17
At—0 00 1+ AtutwT C(At) 1w uw WTA-lw (27)

Combining (14)—(17) yields (10). Taking the dot product of (10) witland taking into
account the fact thab; = 1 andwy = —1, the proof is complete. [

Since we only letr tend to infinity on the face of a cube where the left side of (6) |
sufficiently large, the differencé — @i in (11) is never zero. It follows that the limit
®"" of the potential depends on the choice of the parametéfhe dependence of the
limit on p is troubling since one would like to see the potential converge to the same ve
(independent oft) as the discretization parameters (the size of the cubes and the size o
time stepAt) tend to zero. In our earlier papers, we simply focused on the backward E
time discretizatior(u = 1). Our rationale for this choice qf was based on the following
physical consideration: The discharge process should equilibrate the potential alon
discharge channel, and hence, the effect of a discharge should be t(IDTfakmual to
®p". By Theorem 1, the only value ¢f that leads to the equilibration of the potential is
u = 1. In the next section, we observe that the expression (6) for the potential in the
u = 1is the exact limit of the differential equation (7)asends to infinity.
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4. THE CONTINUOUS LIMIT

We now examine the continuous limit in (7) agends to infinity.

THEOREM 2. If A is a positive definite matrix and(t, t) denotes the solution %)
starting from the initial condition® (t,, ) = ®", then we have

lim lim ®(t, + At, 7) = ®" — A" lww A tw)tw ®". (18)

At—0 1—>00

Proof. For convenience, we sgf=0 and we suppress theargument in®(t, 7). By
the classic formula for the solution to a first-order system of differential equations, we he

At
B(At) = e MAPn —/ e MAt=9A-1jgg (19)
0

whereM = A~1(B + rww"). Substituting foM gives

_ e _A-LawT
e MAt:eA BAte A WWAt.

Recall that ifP is a square matrix, then a matrix exponengfatan be expanded in a Taylor
series:
P2 P3
P_ 4 4.
e_I+P+2!+3!+ . (20)

We apply this expansion 8= —tA~lww' At. To facilitate the simplification of the re-
sulting expression, we use the associative law for matrix multiplication to obtain

A ww)? = Atww A ww ™ = A tww T (wT A" w).

In general, we have

-
A ww " = A" twww A )<t = A7\/\1\/\I(WTA’1W)". (21)
wlA-1w
Combining (20) and (21) gives

(o]

e TATWWIAL _ | Z
k=1
A TwwT S (—t(WTAIw) AL)*

wT Aw k!
k=1

(—tA-TwwT At)*
K!

=14+

A lwwT TA-1
= e—‘[(W AW AL 1).
+ wT Aw ( )

SinceA is positive definitew” A~lw > 0, ande "W A"WAt tends to zero as tends to
infinity. Hence, we have
A~ wwT

. AL T
lim grAw A D2 (22)
T—00 w! Aw
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Observe that this relation for the limit holds independentof On the other hand, ast
tends to zero,

lim e A BAt | (23)
At—=0

Also, we have

AT BHTWWT)(AL-S) _ o~ATIB(AL-9) |im @ TATTWw (At-s)

lim e
T—>00 T—>00
_ e ATBGt-y (| _ A~ tww T
wT Aw
It follows that
At -1 T
lim lim / g AT BFTWHAL=9A-1j g5 = . (24)
At—071—>00 0
Combining (19), (22), (23), and (24), the proof is complete. ]

Observe that the limit (18) of Theorem 2 and that of (10) in Theorem 1 coincide wt
uw=1

5. BREAKDOWN ON MULTIPLE ARCS

In this section, we consider breakdown on multiple arcs. This occurs when the li
in (18) yields an electric potential that violates the constraint (6) for a pair of adjac
centroids in the tessellation. L&™ (t,) denote the limit in (18). Due to (11) in the case
u = 1, we know that the left side of (6) vanishes for the index ppik) and the potential
®*(t,). However, there may exist another pair of adjacent centroids, and associated i
pair (I, m), for which the potentiaf™ (t,) violates the constraint (6). When this happens
we will simultaneously let tend to infinity on two different cube faces. Our procedure fc
determining the second face where weddend to infinity is the following: Consider the
convex combinatiod®* defined by

=1L—1®" + 1P (t,).

As 1 moves from 0 to 1, the potenti@* moves from its present valui®" toward the limit
& (t,) that the potential is trying to achieve. Sindé is a linear function of, it follows
that<I>? — <I>Q is a linear function of that has magnitudeEg at1 = 0, and that vanishes
at A =1 (by Theorem 1 withu = 1). Thus for the breakdown arc (the arc connecting tt
centroids associated withandk), the difference

o — B

is approaching 0 monotonically asnoves from O to 1.
If 7 (tn) violates (6) for a pair of adjacent centroids, then we consider the first value
A with the property that

| - %5

=E
h B
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for a pair of indicesgl, m) associated with adjacent centroids in the tessellation. In numeric
experiments, we observe typically that eitheor m is equal to eitherj or k, and the
breakdown moves to a cube adjacent to the original pair of cubes. We nowtdeid to
infinity on both the face associated with the original g4irtk) and the face associated with
the new pairl, m). If v denotes the vector whose entries are all zero excepijtkatl and

vm = —1, then we need to solve the equation

AD + B+ rww' +twWH® +i=0, (25)

in the case that tends to infinity. IfU is the matrix whose first column is and whose
second column ig, it can be checked that

U™ =ww’ +w'.
Hence, (25) takes the form:
Ad + (B+7tUUH® +i=0. (26)

THEOREM 3. If A is a positive definite matrix an@(t, ) denotes the solution 26)
starting from the initial condition® (t,, ) = ®", then we have

lim lim ®t, + At,7) = ®" - A"IUUTAIU)TUT &". (27)

At—>01—00

Proof. We use the same strategy used to prove Theorem 1; however, some care is ne
since matrix products do not commute generally. In particular, the generalization of (21

A~tuuT = A"tuUTA U IUT = AtUUTAT I T RUTA TUYUT,
which leads to the relation
eftA’IUUTAt =1+ AflU(UTAU)fl(e—r(UTA*IU)At _ |)UT.

Since{j, k} # {I, m}, it follows that the columns of) are linearly independent. Sinéeis
positive definiteJT A=1U is positive definite, and="U"A"VAt tends to zero as tends to
infinity. Hence, we have

lim e TA7VUTA _ | _ A-lyuTAU) U,
T—>00
Finally, we multiply by®" to complete the proof. ]

COROLLARY 1. If ®* denotes the limit appearing on the right side(@?),thenGJJ-+ =
o) anddf = o,

Proof. Multiplying (27) by UT, we see thal™ @' = 0. Since the columns df arew
andv, the relationU™ @* =0 implies thatw" ®* =0 andv' & = 0. By the definition of
vandw, & = & and®d" = ;. ]

Observe that if eithel or m is equal to eitherj or k, then the discharge is moving
to an adjacent centroid, and by Corollarydif = @, = ®;" = ;1. Thus the discharge is
equilibrating the potential throughout the breakdown region.
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Multiple breakdowns continue in this same way. In each step, we form a convex cor
nation of the current potenti@" and the limiting potentiadb™ obtained from Theorem 3.
If the limit satisfies the breakdown condition

+ _ pF
|23 ‘Dblf

. Eg (28)

for each pair of adjacent centroids in the lattice of centroids, then the discharge is com.
the potential jumps fron®" to ®*, and it continues to evolve according to (5). On th
other hand, if (28) is violated for an adjacent pair of centroids in the tessellation, then
determine the first value ¢f and the associated indicasandb for which

| @5 — @5

- hEg. (29)

Another column is added to the mattikwhere each entry in the new column is zero exce|
for a+1 and—1 in positionsa andb. Again, the solution to (26) has the limit (27). The
proof of Theorem 3 whet has more than two columns hinges on the observation tt
the columns olU are linearly independent. This independence is due to the factitha
is the node-arc incidence matrix associated with the graph of the centroids connecte
breakdown (see [1, Theorem 11.9] for the relevant result).

In summary, the lightning discharge proceeds in the following way:

(1) If U is the node-arc incidence matrix associated with the current breakdown |
ion, and if®* denotes the limit (27) of Theorem 2, then we check whether (28) holds
each pair of centroids. If (28) is satisfied, then the breakdown stops, the potential ju
from ®" to ®*, and the potential continues to evolve according to (5). If (28) is violat:
for a pair of centroids, then proceed to step (2).

(2) Determine the first value of between 0 and 1 with the property that (29) hold
for two adjacent centroids in the tessellation. Augmgntith an additional column where
every entry in that column is 0 except foHal and—1 in positionsa andb. Return to
step (1).

By Corollary 1, and its generalization to an arbitrary number of columns, iwe know
that after the discharge is complete, the potential is constant along the arcs associate
connected components of the breakdown region. Moreover, ifthe Earth is treated as a p
conductor and if a branch of the breakdown path reaches the surface of the Earth, the
components off associated with the path reaching the Earth all vanish.

An example of a cloud to ground flash from [4] appears in Fig. 1. In performing t!
simulation, it was assumed that there were three charge centers alongtise a small
positive center at the base of the cloud (2 km), and larger negative and positive ce
at 5 and 10 km, respectively. Since the charge is placed alongrdles, the potential is
cylindrically symmetric. The potential was computed using a cylindrical coordinate syst
and a graded mesh. The model domain had a height and radius of 100 km. The mesh sy
for the region depicted in Fig. 1 is about 313 m in the radial direction and 192 m in
vertical direction.

The breakdown process illustrated in Fig. 1 involves 42 steps. In each step, e |
tend to infinity somewhere in the domain, and we reevaluate the potential to deterr
whether| E||,, has reache&g elsewhere in the domain. The five frames of Fig. 1 show tt
breakdown region after steps 19, 26, 32, 38, and 42, respectively. The breakdown init
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at an altitude around 3.3 km, and progresses both downward and upward. The first frar
Fig. 1 shows the breakdown region during this startup period. Horizontal fingers appe
the second frame, while in the next frame, the breakdown reaches the ground. In the
two frames, the breakdown fingers outward, primarily in a horizontal direction. Each ¢
in the breakdown process is either horizontal or vertical since breakdown in our mod
initiated when||E||.. = Eg. By changing from the sup-norm to the Euclidean norm, th
stair-like breakdown path can be smoothed out.

Although one may think of Fig. 1 as representing a slow motion picture of the lightni
flash generated by our model, the actual elapsed time for the breakdown process is
That is, we view the entire process as taking place instantaneously (relative to the time
At of (8), which can be on the order 0.1 second). At the end of the breakdown proces:
obtain a region of space wheperanishes since the lightning channel has reached the grot
where the potential is zero (the Earth is treated as a perfect conductor in the simulat
The breakdown process has led to a new potential for which the congfiEdigt < Eg is
satisfied with strict inequality throughout the model domain.

6. DISCUSSION

The formula obtained in Theorem 3 for the change in the potential associated wi
series of breakdown arcs for the continuous-in-time equation is exactly the same forr
obtained in [3, 4] using the backward Euler scheme for the time integration. When
took 7 to infinity in the backward Euler scheme, the effect on errors was not clear.
Theorem 3, the jumps in the potential associated with the continuous time process anc
the backward Euler time discretization are identical.

By Theorem 3, the change in the potential associated with the lightning discharge i

AluuTAtu)tuT ",

SinceU is a node-arc incidence matrix with4al and—1 in each column corresponding
to the arcs associated with the breakdown, and since the difference of two compor
of ®" is roughly proportional to the electric field between the associated centroids
follows thatUT ®" is a vector whose components are roughly proportional to the origit
electric field (before breakdown) evaluated along the ensuing breakdown path. The m
A~1U(UTA~1U)~1 shows how the breakdown process and the original electric field (bef
breakdown) interact to change the potential (and the electric field) throughout the el
domain. In essence, the formula of Theorem 3 provides the mathematical analogue c
experimental observations of Willianes al. cited earlier.
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